Красные и белые мышечные волокна
Красные мышечные волокна
Красные мышечные волокна
Медленные волокна называют красными из-за красной гистохимической окраски, обусловленной содержанием в этих волокнах большого количество миоглобина — пигментного белка красного цвета, который занимается тем, что доставляет кислород от капилляров крови вглубь мышечного волокна.
Красные волокна имеют большое количество митохондрий, в которых происходит процесс окисления для получения энергии ST-волокна окружены обширной сетью капилляров, необходимых для доставки большого количества кислорода с кровью.
Медленные мышечные волокна приспособлены к использованию аэробной системы энергообразования: сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Такие волокна отлично подходят для продолжительной и не интенсивной работы (стайерские дистанции в плавании, легкий бег и ходьба, занятия с легкими весами в умеренном темпе, аэробика), движений, не требующих значительных усилий, поддержании позы. Красные мышечные волокна включаются в работу при нагрузках в пределах 20-25% от максимальной силы и отличаются превосходной выносливостью.
Красные волокна не подойдут для подъема тяжелого веса, спринтерских дистанций в плавании, так как эти виды нагрузок требуют достаточно быстрого получения и расхода энергии.
Белые мышечные волокна
Белые мышечные волокна
В быстрых волокнах меньше миоглобина, поэтому они выглядят белее.
Для белых мышечных волокон характерна высокая активность фермента АТФазы, следовательно АТФ быстро расщепляется с получением большого количества необходимой для интенсивной работы энергии. Так как FТ-волокна обладают высокой скоростью расхода энергии, они требуют и высокой скорости восстановления молекул АТФ, которую может обеспечить только процесс гликолиза, потому что в отличие от процесса окисления (аэробное энергообразование) он протекает непосредственно в саркоплазме мышечных волокон, и не требует доставки кислорода митохондриям, и доставки энергии от них уже к миофибриллам. Гликолиз ведет к образованию быстро накапливающейся молочной кислоты (лактата), поэтому белые волокна быстро устают, что в конечном итоге останавливает работу мышцы. При аэробном энергообразовании в красных волокнах молочная кислота не образуется, поэтому они способны долго поддерживать умеренное напряжение.
Белые волокна имеют больший диаметр по сравнению с красными, в них также содержится гораздо большее количество миофибрилл и гликогена, но меньше количество митохондрий. В белых волокнах находится и креатинфосфат (КФ), необходимый на начальном этапе высокоинтенсивной работы.
Белые волокна больше всего подходят для совершения быстрых, мощных, но кратковременных (так как они обладают низкой выносливостью) усилий. По сравнению с медленными волокнами, FT-волокна могут в два раза быстрее сокращаться и развивать в 10 раз большую силу. Максимальную силу и скорость человеку позволяют развить именно белые волокна. Работа от 25-30% и выше означает, что в мышцах работают именно FТ-волокна.
В зависимости от способа получения энергии быстросокращающиеся мышечные волокна делят на два типа:
- Быстрые гликолитические волокна (FTG-волокна). Эти волокна используют процесс гликолиза для получения энергии, т.е. могут использовать исключительно анаэробную систему энергообразования, которая способствует образованию лактата (молочной кислоты). Соответственно, эти волокна не могут производить энергию аэробным способом с участием кислорода. Быстрые гликолитические волокна обладают максимальной силой и скоростью сокращений. Эти волокна играют первостепенную роль при наборе массы в бодибилдинге и обеспечивают пловцам и бегунам спринтерам максимальную скорость.
- Быстрые окислительно-гликолитические волокна (FTO-волокна), иначе промежуточные или переходные быстрые волокна. Эти волокна представляют собой как бы промежуточный тип между быстрыми и медленными мышечными волокнами. FTO-волокна обладают мощной анаэробной системой энергообразования, но они приспособлены также и к выполнению достаточно интенсивной аэробной работы. То есть они могут развивать значительные усилия и развивать высокую скорость сокращения, используя гликолиз в качестве основного источника энергии, и в то же время, при низкой интенсивности сокращения, эти волокна довольно эффективно могут использовать и окисление. Промежуточный тип волокон включается в работу при нагрузке 20-40% от максимума, но когда нагрузка достигает приблизительно 40% организм уже полностью переключается на FTG-волокна.
Мы все разные
Стараться ли выйти на большие тренировочные веса при малом количестве повторений или же делать упор на средний вес и большое количество повторений? Самое интересное, что нет универсального рецепта.
У кого-то будет прогресс от чисто силовой работы с небольшим количеством повторений. У кого-то, наоборот, силовая тренировка не вызовет отклик к росту мышц и не даст прогресса, а вот упор на увеличенное количество повторений со средним весом даст огромный эффект.
Опытные атлеты за годы тренировок интуитивно находят наиболее подходящую для себя схему
Обратите внимание, что в своих роликах на YouTube такие товарищи в большинстве своем говорят: «У меня нет четко прописанного плана по упражнениям на сегодняшнюю тренировку, я буду делать то, что посчитаю нужным и в таком режиме, который подходит моему телу в текущий момент». Это и звезды бодибилдинга, и увлекающиеся граждане попроще, потратившие годы на работу с отягощениями
Рано или поздно многие интуитивно находят свой тип тренинга, если не ленятся экспериментировать, но зачем терять время, когда можно все сделать намного быстрее и без лишних экспериментов?
Для начала разберемся с мифами касательно универсального тренинга.
«Дроп-сэт»
При выполнении тренировочного метода «дроп-сэт» с каждым сбрасыванием веса эффективность упражнения падает, а негативное, в частности, разрушающее воздействие ионов водорода на органеллы мышечной клетки, возрастает. Задача – найти золотую середину между стимуляцией и катаболизмом. Опытным путем я пришел к выводу, что достаточно одного сбрасывания веса после выполнения основного подхода.
Причем основной подход должен выполняться с достаточно большим весом, чтобы вовлечь как можно большее количество мышечных волокон и не быть при этом долгим: совокупное время нагрузки, включающее в себя одно сбрасывание, не должно превышать 40 секунд для мышц верхней половины тела и 60 секунд для мышц ног. Фактически это подход из 6–10 повторений. После чего следует сбрасывание 25–30 % от используемого веса, и это позволит выполнить еще десяток повторений. Отдых во время сбрасывания может достигать 20 секунд. {banner_st-d-2}
Такое выполнение метода «дроп-сэт» позволит одинаково эффективно стимулировать сразу два типа мышечных волокон – гликолитические и промежуточные. И что самое главное, не будет чрезмерно истощающим. Если говорить о количестве таких двойных подходов, выполняемых на одну мышечную группу за тренировку, то здесь ключевым фактором будет гормональный фон. Априори атлет с более высоким уровнем тестостерона в крови, например, созданным искусственно, будет более защищен от разрушительного действия ионов водорода, а значит, может извлечь больше пользы от данного метода.
Я рискну дать ориентировочные цифры, но оговорюсь, что самостоятельная и индивидуальная подстройка объема нагрузки будет куда более результативна. Итак:Тренировки без фармподдержки: 1-2 подхода (с одним сбрасыванием веса в каждом) на одну мышечную группу за тренировку.Тренировка с умеренной фармподдержкой: 2-3 подхода.Тренировки с интенсивной фармподдержкой: 3-4 подхода.
Влияние тестостерона
В некоторых экспериментах на животных после применения андрогенных анаболических стероидов наблюдали изменение соотношения изоформ тяжелых цепей миозина в сторону увеличения медленных изоформ (Fritzshe et al., 1994; Czesla ct al., 1997). Сообщалось об увеличении доли волокон, содержащих MyHCIIA, наряду с сокращением количества волокон, содержащих МуНСПВ, в ряде скелетных мышц грызунов после применения андрогенных анаболических стероидов (Eggington, 1987; Dimauro et al., 1992). Однако сообщалось также о том, что андрогенные стероиды вызывают уменьшение доли мышечных волокон, содержащих MyHCIIA, по отношению к волокнам, состоящим из МуНСПВ (Kelly et al., 1985; Lyons et al., 1986; Salmons, 1992). Эти результаты говорят о том, что характер воздействия андрогенных анаболических стероидов на сократительные способности может зависеть от типа мышц и у различных видов может быть разным. Действительно, существуют и другие данные, свидетельствующие об отсутствии какого-либо воздействия андрогенных анаболических стероидов по соотношение мышечных волокон, содержащих различные изоформы МуНС. Например, в экспериментах на животных чрезмерная нагрузка мышц вызывала увеличение содержания медленных MyHCI, и дополнительное использование андрогенных анаболических стероидов не влияло на характер содержания тяжелых цепей миозина (Boissonneault et al., 1987). Точно так прием андрогенных анаболических стероидон не вызывал изменений сдвига соотношения изоформ МуНС, вызванного экспериментами с обездвиживанием нижней конечности (Tsika et al., 1987). Наконец, не удалось обнаружить никаких различий в соотношении разных изоформ МуНС в трапециевидной мышце хорошо тренированных тяжелоатлетов, принимавших и не принимавших андрогенные анаболические стероиды (Kadi et al., 1999b).
Медленные (красные) мышечные волокна
Эти волокна называются медленными, потому что они обладают низкой скоростью сокращения и максимально приспособлены к выполнению продолжительной непрерывной работы. Они окружены сетью капилляров, которые постоянно доставляют кислород. Также эти волокна называют красными из-за своего цвета. Цвет обуславливает белок миоглобин. Этот тип волокон способен получать энергию не только из углеводов, но и из жиров.
Когда включаются в работу ММВ
ММВ начинают сокращаться при выполнении разного вида кардионагрузки, которые требуют выносливости:
- длительный бег (марафонский бег)
- плавание
- езда на велосипеде
- прыжки на скакалке
- занятия на кардиотренажёрах
- статические упражнения
Т.е. во всех случаях, когда Вы совершаете достаточно длительную и монотонную работу, которая не требует «взрывных» усилий. А значит интервальную кардиотренировку уже нельзя будет отнести к примеру работы исключительно ММВ.
Принято считать, что красные мышечные волокна не способны к существенной гипертрофии, т.е. не увеличиваются в объёме. Именно поэтому Вы никогда не увидите «накаченного» марафонца.
Почему мышцы сокращаются
Волокна скелетных мышц соединяются со спинным мозгом посредством толстых нервных волокон. После попадания в мускул каждое из нервных волокон делится на сотни разветвлений, которые снабжают сотни мышечных волокон. Соединение между нервом и волокном мышечной ткани называют синапсом, или нервно-мышечным соединением. Примечательно, что на каждом мышечном волокне может формироваться только один синапс. При соответствующем нервном сигнале возникает потенциал действия, который передается по нервам от спинного мозга к мускулам.
От свойств мышечных волокон зависит то, как мускулатура адаптируется к повторяющимся сигналам. Именно типы волокон обуславливает предрасположенность спортсмена к той или иной тренировочной программе. Во время тренировки происходит гипертрофия мышечных волокон – увеличение их объема и массы
При этом важно понимать, что количество волокон не изменяется и обуславливается генетическими особенностями того или иного человека
Строение мышцы
мышечных волокон
В саркоплазме (цитоплазме) мышечных волокон содержится множество митохондрий, которые выполняют роль электростанций, где проходят процессы обмена веществ и скапливаются вещества богатые энергией, а также другие вещества, необходимые для обеспечения энергетические потребностей. Каждая мышечная клетка имеет тысячи митохондрий, которые составляют 30-35% ее массы. Митохондрии выстраиваются цепочкой вдоль миофибрилл, тонких мышечных нитей, благодаря которым и происходит сокращение-расслабление мышц. Одна клетка содержит обычно несколько десятков миофибрилл. Длина миофибриллы может достигать нескольких сантиметров, а масса всех миофибрилл мышечной клетки составляет около 50% ее общей массы. Таким образом, толщина мышечного волокна главным образом будет зависеть от количества находящихся в нем миофибрилл и от поперечного сечения миофибрилл. Миофибриллы в свою очередь состоят из множества крохотных саркомеров.
Строение мышцы
Целенаправленные занятия физкультурой и спортом приводят к:
- увеличению количества миофибрилл в мышечном волокне;
- увеличению поперечного сечения миофибрилл;
- увеличению размеров и количества митохондрий, снабжающих миофибриллы энергией;
- увеличиваются запасов энергоносителей в мышечной клетке (гликогена, фосфатов и т.д.).
Сила и мышечная масса увеличиваются не пропорционально: если мышечная масса увеличивается, например, вдвое, то мышечная сила при этом увеличится втрое.
Биопсии мышечной ткани показали более низкий процент миофибрилл в мышечных волокнах женщин, чем у мужчин (даже у спортсменок высокой квалификации). Вкупе со значительно более низким уровнем тестостерона (тестостерон заставляет “выжимать” из мужского организма максимум), традиционная у мужчин тренировка на увеличение мышечной массы с большими весами в малом числе повторений оказывается малоэффективной для большинства женщин. Поэтому женщины и не могут нарастить огромные мышцы, как бы не старались.
Количество мышечных волокон в конкретной мышце задано генетически и в процессе тренировок не изменяется. Поэтому человек с бОльшим количеством мышечных волокон в конкретной мышце имеет бОльший потенциал для развития этой мышцы, нежели другой человек, имеющий меньшее количество мышечных клеток в этой мышце.
Быстро сокращающиеся мышечные волокна ( II-тип)
1. Быстро сокращающиеся волокна делятся на 2 группы:
- быстро сокращающиеся IIa — быстрые оксидативные (используют кислород, чтобы преобразовать гликоген в АТФ);
- быстро сокращающиеся IIb — быстрые гликолитические (используют АТФ, который хранится в мышечных клетках в виде гликогена, чтобы вырабатывать энергию).
2. Быстро сокращающиеся волокна имеют высокий порог активации, поэтому включаются в работу только тогда, когда потребность в силе будет больше, чем могут обеспечить медленно сокращающиеся волокна.
3. Быстрым волокнам требуется меньше времени, чтобы достичь пиковой силы. К том же они могут генерировать больше силы, чем медленные волокна.
4. Хотя они генерируют больше силы, но и быстрее устают.
5. Мышцы, отвечающие за создание движения, в большей степени состоят из быстрых волокон.
6. Тренировка для силы и прочности увеличивает количество быстро сокращающихся мышечных волокон, задействованных в конкретном движении.
7. Быстро сокращающиеся волокна отвечают за размер и выразительность мышц.
8. Быстрый тип волокон называется «белыми волокнами», так как плохо снабжается кровью и не имеет такого насыщенного цвета, как второй тип.
Как видно из вышеперечисленного, характеристики быстро сокращающихся волокон требуют тренировок на силу и прочность, а также на развитие взрывной силы. Если вы хотите по максимуму использовать быстрые волокна в своих тренировках для повышения силы и прочности, вот несколько конкретных методов, которые в этом помогут.
Методы тренировки для быстро сокращающихся волокон:
– Тренировки с тяжелым весом заставляют мышцы активировать больше мышечных волокон. Чем тяжелее вес, тем больше быстро сокращающихся волокон будет вовлечено в работу.
– Выполнение взрывных движений, а также упражнений на прочность с использованием штанги, гирь или гантель, обеспечит работу большего количества мышечных волокон.
– Быстро сокращающиеся волокна быстро устают. Поэтому надо сосредоточиться на использовании тяжелого веса, но только до определенного числа повторений (например, от двух до шести), чтобы достигнуть максимального эффекта.
– Поскольку быстрые волокна быстро истощают энергию, во время тренировок требуются более длительные периоды отдыха, чтобы мышцы-двигатели имели достаточно времени восстановиться и пополнить запасы АТФ. Поэтому после каждого взрывного или силового упражнения стоит делать паузы продолжительностью в 60-90 секунд.
Генетика определяет количество каждого из типов мышечных волокон в нашем теле. Тем не менее, понимание того, какой именно, быстро- или медленно сокращающийся, тип является доминирующим, поможет выстроить правильную программу тренировок. Поэтому, если обнаружите, что, как правило, придерживаетесь тренировок на выносливость, и они относительно легко вам поддаются, вы, вероятно, являетесь обладателем большого количества медленно сокращающихся волокон. И наоборот, если предпочитаете физическую нагрузку, которая предусматривает короткие взрывные движения или тренировки с большим весом, — в вашем теле доминирует быстро сокращающийся тип волокон.
Программа упражнений, которая применяет правильные стратегии тренировок для ваших мышечных волокон, поможет максимизировать эффективность нагрузок.опубликовано econet.ru
Таблица характеристик типов мышечных волокон
Характеристики | Медленно сокращающиеся | Быстро сокращающиеся IIa | Быстро сокращающиеся IIb |
Генерирование силы | Низкий уровень | Средний уровень | Высокий уровень |
Скорость сокращения | Низкий уровень | Высокий уровень | Высокий уровень |
Уставаемость | Низкий уровень | Средний уровень | Высокий уровень |
Гликолитическая способность | Низкий уровень | Высокий уровень | Высокий уровень |
Оксидативная способность | Высокий уровень | Средний уровень | Низкий уровень |
Снабжаемость кровью | Высокий уровень | Средний уровень | Низкий уровень |
Митохондриальная плотность | Высокий уровень | Средний уровень | Низкий уровень |
Выносливость | Высокий уровень | Средний уровень | Низкий уровень |
Присоединяйтесь к нам в , , Одноклассниках
Медленные (красные) мышечные волокна
Медленные мышечные волокна обладают низкой скоростью сокращения. Отсюда и название – медленные.
Если нагрузка нетяжелая, работать надо медленно, но долго, мозг «дергает» за ниточки красного цвета. Другое название медленных мышечных волокон – красные.
Чтобы мышцы могли трудиться долго, им нужно много кислорода. Кислород к мышечным тканям поставляют кровеносные капилляры. В медленных мышечных волокнах капилляров очень много. Поэтому они красные. Вместе с кислородом, кровь приносит «топливо».
Откуда красные волокна берут энергию
Человек, это биологическая машина. Чтобы автомобиль поехал, нужен бензин. Чтобы мышцы работали, нужна молекула АТФ.
Молекулу АТФ организм «выжимает» из жиров и углеводов. Как пища превращается в спортивное топливо – история отдельная. Подробно в теме – метаболизм глазами спортсмена.
Здесь напомню главное. Чтобы получить АТФ из жира, нужны время и кислород. Энергию, полученную таким путем, организм использует для продолжительных, низко интенсивных нагрузок. Например, пешие прогулки или кросс на длинную дистанцию.
Именно для такой работы организм приспособил красные мышечные волокна. Вот вам воздух и пища, работайте на здоровье.
Когда нужно сделать рывок спринтера или поднять тяжесть, нейроны мозга подключают к работе «белую гвардию».
Условия для роста мышц
Итак, что нужно, чтобы росли мышцы?
- ТРЕНИРОВОЧНЫЙ СТРЕСС (разрушение)! Он нужен для того, чтобы способствовать выработке АНАБОЛИЧЕСКИХ ГОРМОНОВ! Только тогда тело включит процесс роста (анаболизма).
- ГОРМОНАЛЬНЫЙ ФОН! Нам нужны ГОРМОНЫ, которые копируют информацию о синтезе белка из ДНК клетки. Именно благодаря им метаболизм (обмен веществ) сдвигается в сторону роста (анаболизма). Разрушение белковых структур на тренировке заставляет организм восстанавливать разрушения. Это залечивание, как раз, и называется СИНТЕЗ БЕЛКА.
- ИОНЫ ВОДОРОДА! О них мы сегодня уже достаточно много говорили. Они РАСКРУЧИВАЮТ СПИРАЛЬ ДНК для того, чтобы информация о синтезе белка стала доступна для считывания гормонами (стероидно-рецепторными комплексами). Если не будет достаточного количества ионов водорода, которые выделяются в ответ на расход АТФ, то у гормонов не будет возможности считать информацию о синтезе белка и запустить рост. ЗАПОМНИТЕ: ГОРМОНЫ (стероиды) без тренировочного стресса НЕ ДАДУТ РЕЗУЛЬТАТА, а ТРЕНИРОВКА БЕЗ ГОРМОНОВ ДАСТ!
- КРЕАТИНФОСФАТ! Даёт энергию молекуле ДНК для ей быстрой работы. Так же добавка КРЕАТИН МОНОГИДРАТ может способствовать выполнению дополнительных пары повторений на тренировке. Хорошая вещь.
- АМИНОКИСЛОТЫ для роста! Для того, чтобы вырастить мышцы, нужно чтобы было из чего растить! Аминокислоты – это пластический строительный материал для роста мышц.
Да белок (аминокислоты) очень важен! Но больше в условиях ДИЕТЫ (дефицита простых углеводов). Представьте, когда вы худеете, т.е. не едите углеводы и тренируетесь, то гликогена в ваших мышцах ОЧЕНЬ МАЛО, а значит приходится использовать в качестве энергии аминокислоты (дорогой источник питания). Если вы будете дополнительно пить на тренировке и после аминокислоты, то вы сохраните больше мышц.
Это не выгодно производителям спортивного питания, т.к. БЕЛОК ДОРОЖЕ и с его продажи можно получить БОЛЬШЕ! Но я считаю, что это так. УГЛЕВОДЫ ВАЖНЕЕ, чем белок, особенно в условиях набора мышечной массы, т.к. дают энергию вашим мышцам.
Дело в том, что после тренировки ваше тело ДАЖЕ НЕ ДУМАЕТ о том, чтобы растить мышцы, т.к. оно истощило запасы энергии! Ему надо их восполнить! Именно поэтому следующие два дня после тренировки ваше тело восполняет запасы энергии и даже не думает о росте. А сократительные белки продолжают разрушаться за счёт ферментов – ПРОТЕИНКИНАЗ! Только спустя 2 дня тело запускает восстановление и, как обычно пишут, восстанавливается за 7 дней. Но на самом деле, даже больше. Обычно за 10-14 дней.
Это касается ЛЮБЫХ мышечных волокон (ММВ, БМВ, ВБМВ). Единственная разница в том, что для ММВ сложнее удержать нужную концентрацию ионов водорода, поэтому необходимо выполнять упражнения определённым образом, о чём мы говорили выше в этой статье.
Включение разных типов волокон в зависимости от нагрузки
При легкой нагрузке (ходьба, прогулка на велосипеде, бег трусцой) энергия поставляется за счет аэробной системы — окисление жиров в мышечных волокнах типа I. Запасы жира неисчерпаемы.
При нагрузке средней мощности (бег, езда на велосипеде) в мышечных волокнах типа I помимо окисления жиров растет доля окисления углеводов, хотя энергообеспечение все еще протекает аэробным путем. Хорошо подготовленные спортсмены могут поддерживать максимальную аэробную нагрузку 1-2 часа. За это время происходит полное истощение запаса углеводов.
При повышении интенсивности работы (соревновательный бег на 10 км) включаются мышечные волокна типа IIа и окисление углеводов становится максимальным. Энергообеспечение идет за счет кислородного механизма, но и лактатная система вносит свой вклад. Организм перерабатывает молочную кислоту с той скоростью, с какой ее производит. Если уровень интенсивности и доля участия лактатной системы в энергообеспечении продолжают расти, молочная кислота накапливается и быстро истощаются запасы углеводов. Такая нагрузка может поддерживаться в течение ограниченного периода времени, в зависимости от тренированности спортсмена.
Во время спринтерской тренировки максимальной мощности или при выполнении интервалов с высокой интенсивностью включаются мышечные волокна типа IIb. Энергообеспечение идет полностью анаэробным путем. Источник энергии — исключительно углеводы. Показатели молочной кислоты сильно возрастают. Продолжительность нагрузки не может быть большой.
Как всегда варить рис рассыпчатым? Пропорции и время варки — гид
Типы волокон
У людей все волокна скелетных мышц имеют разные механические и метаболические свойства. Различные типы мышечных волокон определяют по максимальной скорости их сокращения (быстрой и медленной) и главного метаболического пути, который они используют для образования АТФ (окислительный и гликолитический). Мышечные волокна в целом делятся на:
I тип: медленные окислительные (МО) – медленные, тонкие, слабые, неутомляемые мышечные волокна. Низкий порог активации мотонейрона. Волокна I типа хорошо кровоснабжаются и имеют большее количество миоглобина, что придает им характерный красный цвет (красные волокна). Они также отличаются наличием многочисленных крупных митохондрий, содержащих ферменты окислительного фосфорилирования. Хотя в медленных волокнах больше миозина, чем в быстрых мышечных волокнах, они содержат меньше фермента АТФазы и медленнее сокращаются. Иннервация обеспечивается малыми альфа-мотонейронами спинного мозга
Благодаря низкой скорости сокращения они больше приспособлены к длительным нагрузкам, что, например, очень важно для поддержания позы.
II тип: быстрые гликолитические волокна – толще, чем мышечные волокна I типа, отличаются быстрыми сокращениями, развивают большую силу и быстрее утомляются. Эти волокна хуже кровоснабжаются и имеют меньше митохондрий, липидов и миоглобина
В литературе они описываются как белые волокна. В отличие от медленных волокон, быстрые волокна содержат в основном ферменты анаэробного окисления и больше миофибрилл. Эти миофибриллы отличаются меньшим содержанием миозина, который, однако, сокращается быстрее и лучше метаболизирует аденозинтрифосфат (АТФ). Кроме того, в этих волокнах лучше выражен саркоплазматический ретикулум. Благодаря высокой скорости сокращения и быстрой утомляемости эти волокна способны на кратковременную работу. Иннервация осуществляется большими альфа-мотонейронами спинного мозга. Эти волокна делятся на:
- IIа тип: быстрые окислительно-гликолитические (БОГ) или просто быстрые окислительные – промежуточные волокна, средней толщины. Более выносливы, чем волокна IIb типа, но утомляются быстрее, чем волокна I типа. Способны к выраженному сокращению, при этом развивают среднюю силу. Источниками энергии являются как окислительные, так анаэробные механизмы (быстрые окислительные волокна).
- IIb тип: быстрые гликолитические волокна (БР) – крупные, быстрые, сильные, быстроутомляемые мышечные волокна, с высоким порогом активации мотонейрона. Активируются при кратковременных нагрузках и развивают большую силу. Получают энергию через процессы анаэробного окисления, источником энергии является гликоген. В этих волокнах обнаруживают большое количество гликогена и мало митохондрий.
Поскольку скорость сокращения самых быстрых мышечных волокон несколько выше, чем скорость сокращений волокон IIb типа, самые быстрые волокна называются в литературе волокнами IIх типа.
Иногда выделяют волокна IIс типа — эти волокна не похожи на волокна ни I, ни II типа. Они проявляют как окислительную, так и гликолитическую активность и представлены лишь в небольшом количестве (около 1%). В зависимости от типа тренировок они могут переходить в волокна I или II типа.
Мышечные волокна возбуждаемые одним мотонейроном входят в состав одной двигательной единицы (ДЕ). Скелетные мышцы человека состоят из ДЕ всех трех типов. Одни из них включают преимущественно медленные ДЕ, другие — быстрые, третьи — и те, и другие.
Роль синтеза белка при наборе мышечной массы
Каждая клетка в организме человека имеет в своем составе только по 1 ядру, мышцы же – большое количество, что позволяет им синтезировать новые, качественные белки, которые состоят из определенного количества аминокислот. Ядра клеток мышц подают сигнал рибосомам, чтобы они синтезировали необходимый вид белка.
Если вы не будете поставлять мышцам необходимый строительный материал, они, просто не смогут вырасти. И снова, как вы можете видеть, все упирается в питание.
Мышечное напряжение, его влияние на мышцы
Напряжение, создаваемое мышцей во время тренировки, еще один важнейший элемент. Он отвечает за запуск механизма синтеза белка, подавая сигнал клеткам мышц о необходимости питания «пострадавших» волокон.
Благодаря этому-то и происходит появление новых тканей, увеличение массы и объема мышцы. Рецепторы в клетках очень чувствительны к максимальным нагрузкам и большому напряжению. Именно поэтому все профессиональные культуристы советуют заниматься, пока позволяют силы.
Необходимо переступать болевой порог, чтобы запустить процесс синтеза белка и суперкомпенсации.
Роль гормонов в тренировочном процессе
Рост мышц строится на 3 «китах»:
- Тестостерон
- Инсулин
- Гормон роста
Каждый из этих гормонов оказывает сильнейшее влияние на мышечные клетки. Инсулин ускоряет процесс подачи протеина к мышцам. Калий-натриевый насос осуществляет процесс передачи аминокислот в мышечную ткань. Два остальных гормона, наоборот, действуя на волокна мышц, заставляют их распадаться. Весь этот процесс возможен только при мощных нагрузках.
Роль аминокислот
Аминокислота – это частица белка. Из них строится необходимый белок. 1 вид белка содержит несколько видов аминокислот. Ваши результаты по набору массы зависят целиком и полностью от того, сколько вы употребляете белка вместе с пищей.
Читайте про пользу творога для мышц.
Необходимое количество белка определяется уровнем интенсивности тренировочного процесса. Также кроме белка важную роль играют калории, которые поставляют необходимую энергию для занятий сложными физическими упражнениями.
Циклы роста и снижения мышечной массы
В бодибилдинге любой культурист должен помнить о 2-х важных процессах:
- Анаболический цикл (постоянный рост мышц, если соблюдены все условия тренинга + правильное питание)
- Катаболический цикл (недостаточное питание, вследствие чего спад мышечного роста и появление утомления)
Необходимые условия для роста мышц
Если вы решили нарастить мышечную массу, то вам необходимо следовать 3-м главным составляющим:
- Мощные нагрузки и правильно построенный тренировочный процесс.
- Правильное и режимное питание, которое будет поставлять вашим мышцам все необходимые вещества.
- Полноценный отдых.
Это важно
Необходимо помнить, что наш организм «смышлёный», он привыкает к определенной нагрузке, которая повторяется продолжительное время. Вам следует «удивлять» его новыми упражнениями, меняющимися нагрузками, продолжительностью тренировок и многими другими уловками.
Для полноценного роста мышц вам оптимально развивать не только быстрые волокна, но и медленные. То есть — иногда чередовать нагрузки (на силу и на массу). От этого зависит пропорциональный рост.
Только база
Базовые многосуставные упражнения – то, на что нужно сделать ставку для максимально быстрого массонабора. Мы будем использовать только их, но в больших «дозировках».
Ответить на вопрос «Как накачать мышцы за месяц?» невозможно без понимания преимуществ базовых движений:
- Прокачка максимального числа мускулов. Не нужно выполнять много упражнений, занимать драгоценное тренировочное время. Тренировки получаются короткими и эффективными;
- Выделение анаболических гормонов. Тестостерон и другие соединения, обеспечивающие рост мускулов, синтезируются при выполнении базовых движений. При плохой работе гормональной системы накачка мускулов затрудняется или становится не возможной.